Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions
نویسندگان
چکیده
The initial data and bottom topography, used as inputs in shallow water models, are prone to uncertainty due to measurement errors. We model this uncertainty statistically in terms of random shallow water equations. We extend the Multi-Level Monte Carlo (MLMC) algorithm to numerically approximate the random shallow water equations efficiently. The MLMC algorithm is suitably modified to deal with uncertain (and possibly uncorrelated) data on each node of the underlying topography grid by the use of a hierarchical topography representation. Numerical experiments in one and two space dimensions are presented to demonstrate the efficiency of the MLMC algorithm.
منابع مشابه
Multi-level Monte Carlo finite volume method for shallow water equations with uncertain parameters applied to landslides-generated tsunamis
Two layer Savage-Hutter type shallow water PDEs model flows such as tsunamis generated by rockslides. On account of heterogeneities in the composition of the granular matter, these models contain uncertain parameters like the ratio of densities of layers, Coulomb and interlayer friction. These parameters are modeled statistically and quantifying the resulting solution uncertainty (UQ) is a cruc...
متن کاملMulti-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions
We extend the Multi-Level Monte Carlo (MLMC) algorithm of [19] in order to quantify uncertainty in the solutions of multi-dimensional hyperbolic systems of conservation laws with uncertain initial data. The algorithm is presented and several issues arising in the massively parallel numerical implementation are addressed. In particular, we present a novel load balancing procedure that ensures sc...
متن کاملParallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere
High resolution and scalable parallel algorithms for the shallow water equations on the sphere are very important for modeling the global climate. In this paper, we introduce and study some highly scalable multilevel domain decomposition methods for the fully implicit solution of the nonlinear shallow water equations discretized with a second-order well-balanced finite volume method on the cube...
متن کاملA fast finite volume solver for multi-layered shallow water flows with mass exchange
A fast finite volume solver for hydrostatic multi-layered shallow water flows with mass exchange is investigated. In contrast to many models for multi-layered hydrostatic shallow water flows where the immiscible suppression is assumed, the present model allows for mass exchange between the layers. The multi-layered shallow water equations form a system of conservation laws with source terms for...
متن کاملFinite Volume Multilevel Approximation of the Shallow Water Equations with a Time Explicit Scheme
We consider a simple advection equation in space dimension one and the linearized shallow water equations in space dimension two and describe and implement two different multilevel finite volume discretizations in the context of the utilization of the incremental methods with time explicit or semi-explicit schemes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012